When Are You Ready to Submit an ERC (Advanced) Grant Proposal?

Lieven Eeckhout Ghent University

FWO/NCP ERC Info Session Brussels – June 15, 2017

Who Am I?

PhD in 2002 from Ghent University
2003-2009: FWO postdoc
2006-2009: assistant professor (10%)
2009-2012: associate professor (100% tenured)
2012-present: professor

Field of expertise: computer architecture Faculty of Engineering and Architecture at Ghent University

My work fits ERC PE6: Computer Science and Informatics

My ERC Trajectory

2010: ERC Starting Grant

- Dependable Performance on Many-Thread Processors

2012: ERC Proof-of-Concept

- Data Center Monitoring for Improving Insight and Efficiency

2015: ERC Proof-of-Concept

- High-Speed Architectural Simulation of ARM-based Systems

2016: ERC Advanced Grant

 Load Slice Core: A Power and Cost-Efficient Microarchitecture for the Future

When Are You Ready to Submit an ERC (Advanced) Grant Proposal?

Your CV and Track Record

The Project

[Disclaimer: This is just based on my perspective and experience on the whole process]

Your CV and Track Record

Key mission

- Convince the panel that you are the forefront of your research field
- And this may be (very) different for everybody
 - Highlight your key strengths and accomplishments

Some Suggestions

Publish in top-tier venues

- Quality is way more important than quantity!

Explain your key contributions and how they have impacted the field

 Changed current practice, moved the state-of-the-art, industry usage of your technology, citations, downloads, awards, patents, spin-offs

Demonstrate that you are recognized as a world expert by your peers

- Serve on or chair technical program committees, associate editor, editor-in-chief, expert service, etc.

Demonstrate you are internationally active

- Research mobility, international collaborations

Demonstrate that you can manage research

- List prior research endeavors and funding, explain your role and contribution

Is Now the Right Time to Apply?

I knew my strengths (and weaknesses)

But I had some concerns

- Am I senior/old enough?
- Is my research group big enough?
- Is my h-index high enough?

... should I apply now or wait a little longer?

Am I Old/Senior Enough?

I was 40 years old on Jan 1, 2016

2016 STG-COG-ADG Calls Age of grantees

European Research Council Established by the European Commission

Is My Research Group Big Enough?

People in my faculty with an ERC AdG

	#professors	#postdocs	#PhD students
Roel Baets	8	17	60
Piet Demeester	22	27	82
Geert De Schutter	6	40	
Guy Marin	10	15	55

My research group: 1 postdoc + 8 PhD students

Is My H-index High Enough?

My survey of 2014 and 2015 ERC AdG PE6 grant holders

– H-index (Google Scholar) ranging from 35 to 60+

My h-index in summer 2016: 37 BUT I'm young...

Bottom line

I knew my strengths, weaknesses and concerns but in the end I decided to go for it

Take-away message: Don't self-sensor

Convince your panel that you are at the forefront of your research field (in Europe)

With your particular strengths and accomplishments

Try to impress them

but don't overdo it

The project

The most important thing

Key idea of proposal must

- create a 'wow'-feeling
- be relevant
- be high impact
- be high-risk/high-gain

You must be the ideal person for the job

What is a high-risk/high-gain proposal?

What follows is my own experience

Not just with ERC but also with other funding agencies

Pose high-impact hypothesis and objective — And provide preliminary data to support this

Examples that follow are taken from my 2010 StG and 2016 AdG applications

Fundamental problem in many-thread processors

in parallel workloads

System software assumes threads make equal progress

Threads do not make equal progress due to resource sharing

Major concern for future applications

Real-time embedded: missed deadlines, uneconomical safety margins High performance computing: load imbalance

Datacenters, the cloud: large and variable response times

DPMP – ERC StG Interview – July 8, 2010 Lieven Eeckhout

Non-dependable performance

Some threads make considerably faster progress than others depending on the execution context

single-thread progress on multi-threaded processor

The DPMP proposal

DPMP – ERC StG Interview – July 8, 2010 Lieven Eeckhout

Novel paradigm for HW/SW performance interaction on manythread processors

Fundamental problem

- •Non-dependable performance on many-thread processors
- •System software is unaware of thread progress

Solution

- •Key ideas: performance introspection and thread progress aware scheduling and resource management
- •Key novelty: based on well-founded analytical modeling

Impact

- Novel paradigm for HW/SW performance interaction on many-thread processors
- •Better system throughput, bounded response times, meet deadlines, balanced parallel performance, better QoS and SLA on future manythread processors

Key idea: Performance introspection

Per-thread cycle accounting: estimate per-thread progress during multi-threaded execution

Analytical modeling based on first principles:

T = N/D + // useful work $m_{L1I\$} \times l_{L1I\$} + // L1 I-cache misses$ $m_{br} \times l_{br} + // branch mispredicts$ $m_{L2D\$} \times l_{L2D\$} // L2 D-cache misses$ MLP

[ACM Transctions on Computer Systems, 2009 IEEE Micro Top Picks, 2007]

DPMP – ERC StG Interview – July 8, 2010 Lieven Eeckhout

ERC AdG: Load Slice Core

In-order processor

- High power-efficiency
- High cost-efficiency
- 4 decades old

Out-of-order processor

- High performance
- 2 decades old

Given current design constraints: What we really need is high performance in a cost and power-efficient way

ERC AdG: Load Slice Core

"We propose the *Load Slice Core (LSC) microarchitecture* [...]

Experimental results published at the 2015 International Symposium on Computer Architecture (ISCA), the flagship conference in the field of computer architecture, report that the Load Slice Core delivers 4.7 times higher performance per Watt than an outof-order core [6]. Taking cost into account as well, we find that the *Load Slice Core delivers nearly 8 times higher performance per Watt per euro compared to an out-oforder core*. [...]

These preliminary results suggest that *the Load Slice Core could potentially be a gamechanging core microarchitecture, which is the key motivation for submitting this project proposal.*"

Take Your Time

Developing key idea in proposal takes time

- A year is normal
- Needs to be a 'big' idea, high-risk/high-gain
 - E.g., 10× improvement, paradigm shift, novel solution to a longstanding problem, fundamentally new contribution, etc.
- Needs to be timely, relevant, high-impact
- Convince the panel you are the ideal person for the job
 - Expertise
 - Preliminary data to support the hypothesis and to demonstrate the objectives are achievable

The actual proposal writing takes much less time: 3 to 4 weeks

Some additional thoughts

Make sure your proposal is written with both the expert and not-so-expert in mind

B1 reviewed by panel; B2 goes to external (expert) reviewers

First write B2 – then write B1

Try to make your proposal visually attractive and different from other proposals

- It needs to stand out!
- Use typographic elements and figures on every page

Thank you

And good luck!

Lieven Eeckhout